A CONVENIENT PREPARATION OF MALTOL, ETHYLMALTOL, AND PYROMECONIC ACID FROM 2-ALKYL-6-METHOXY-2H-PYRAN-3(6H)-ONES

Sigeru TORII*, Hideo TANAKA, Takuo ANODA, and Yasuo SIMIZU

Department of Industrial Chemistry, School of Engineering, Okayama University, Okayama 700

The efficient synthesis of 2-alkyl-3-hydroxy-4H-pyran-4-ones, e. g., pyromeconic acid (6a), maltol (6b), and ethyl maltol (6c), from 2-alkyl-4,5-epoxy-6-methoxytetrahydropyran-3-ones 5 by acid-catalyzed rearrangement is described. The key precursors 5 were obtained by epoxidation of 2-alkyl-6-methoxy-2H-pyran-3(6H)-ones 4, which were synthesized by three steps starting from furfuryl alcohols 1.

Maltol (3-hydroxy-2-methyl-4H-pyran-4-one) (6b) and its related compounds 6a and 6c have been of great interest as the flavoring additives in foods. 1) For the synthetic purpose of 3-hydroxy-4H-pyran-4-ones 6, kojic acid, meconic acid, 3) comenic acid, 4) pyromeconic acid, 5) rhamnopyranoside, 6) 1,1-dimethoxy-3,5-heptanedione, 7) and the related compounds 8) have been frequently employed as a starting material. Strange enough, attempt to prepare 6 from 2H-pyran-3(6H)-ones 3, which can be easily provided by ring expansion of 2,5-dialkoxy-2-(1-hydroxyalkyl)-2,5-dihydrofurans 2, 9) has not yet been reported. We wish to report here a new and efficient synthetic way to 2-alkyl-3-hydroxy-4H-pyran-4-ones 6 via 2H-pyran-3(6H)-ones 4 and tetrahydropyran-3-ones 8, which were obtained by several steps starting from furfuryl alcohols 1.

Ring expansion of 2-(1-hydroxypropy1)-2,5-dimethoxy-2,5-dihydrofuran (2c) in aqueous 50% THF solution containing a few drops of 1 M aqueous perchloric acid 10 at room temperature for 10 min afforded 2-ethy1-6-hydroxy-2H-pyran-3(6H)-one (3c) in 98% yield; IR 3330 (0H), 1675 (C=0), 1632 cm⁻¹ (C=C). The preparation of the key intermediate 2c from 1c was carried out using electrochemical procedures improved in our laboratory. 11) Refluxing the dihydropyran-3-one 3c with methyl orthoformate in the presence of magnesium sulfate 12) gave the acetal 4c in 90% yield; IR 1702 (C=0), 1686 (C=0), 1631 cm⁻¹ (C=C); PMR & 3.47, 3.51 (2s, 3H, CH₃0)(see Table 1). Addition of 2 molar amounts of 15% H₂0₂ to a two-phase solution

containing 4c in diethyl ether and aqueous 5% sodium carbonate at 5-10 °C provided the epoxy ketone 5c in 88% yield; IR 1726 cm⁻¹ (C=O); PMR & 3.33-3.75 (m, 2H, H-C, C-H)(see Table 2). Heating of 5c in dioxane in the presence of sulfuric acid afforded 6c in 91% yield (see Table 3). On the other hand, reaction of the epoxide 5c with 1:20 concentrated hydrochloric acid-ethanol

at 75-80 °C for 20 hr afforded the chlorinated product 7c ¹³⁾ (34%); IR 1710 (C=0), 1627 cm⁻¹ (C=C); PMR 8 6.98 (d, 1H, HC=C) along with 6c (39%). Refluxing 5c with 1:4:16 hydrochloric acid-water-ethanol gave exclusively 6c in 67% yield.

The alternative way to 6 was accomplished <u>via</u> tetrahydropyran-3-ones 8. Thus, hydrogenation ¹⁴⁾ of 4c in methanol in the presence of PtO₂ gave 8c in 87% yield; IR 1730 cm⁻¹ (C=0). Refluxing 8c with selenium dioxide in aq. 60% ethanol afforded 6c in 58% yield.

Studies on the development of the further alternative synthetic ways for maltol synthesis from furfuryl alcohols 1 are currently in progress.

Table 1. Conditions and Results in Acetalization of \mathfrak{Z}

Compound (g)	CH(OMe) ₃	MgSO ₄	MeOH ml	Time h	Bp °C/mmHg	Product	Yield %
3a (1.14)	15	3	0.3	6	68-70/11	4a 9a)	77
3b (1.28)	20	3		6	72-74/11	4b 9a)	87
3c (1.42)	25	3		20	74/10	4c ¹⁶⁾	90

Table 2. Conditions and Results in Epoxidation of 4

Compound (g)	Solvent (ml)	5% Na ₂ CO ₃	15% н ₂ 0 ₂	•	Time h	Bp °C/mmF	Product Ig	Yield %
4a (2.56)	Ether (40)	10	9.2	5	3	75-78/11	5ª 15)	89
4b (2.84)	Ether (40)	10	9.2	10	3	83-86/11	5 ^b 13)	90
4b (2.84)	MeOH (30)	10	4.6	0-3	3	83-86/11	5b ¹³⁾	93
4b (2.84)	н ₂ 0 (30)	10	14.5*	0-5	3	83-86/11	5b ¹³⁾	90
4c (3.12)	Ether (40)	10	9.2	5	3	80-85/5	5c 16)	88

 $^{^{*}}$ Aqueous 5% hydrogen peroxide was used.

Table 3. Conditions and Results in Isomerization of Epoxides 5

Compound	Solvent	Catalyst	Time	Product	Yield
(g)	(ml)	(g)	h		%
5a (2.88)	Dioxane (25)	80% н ₂ so ₄ (3.5)	1	6a 17)	78
5b (3.16)	н ₂ о (30)	conc H ₂ SO ₄ (3.0)	4	6ь ⁵⁾	87
5c (3.44)	Dioxane (25)	80% н ₂ so ₄ (3.5)	1	ود ⁵⁾	91

 $^{^{\}ast}$ The reactions were carried out at 95-100 $^{\rm o}$ C.

REFERENCES AND FOOTNOTES

- 1) Y. Ito, Koryo, 102, 11 (1972); K. Sato and S. Inoue, Kagaku to Kogyo, 23, 974 (1970); A. O. Pittet, P. Rittersbacher, and R. Muralidhara, J. Agr. Food Chem., 18, 929 (1970) and references cited therein.
- 2) R. L. Miller, B. E. Tate, R. P. Allingham, and H. Rutner, Berg. Pat. 625114 (1963).
- 3) K. Hayashi, M. Kawase, and H. Ueda, Japan Pat. 11586 (1967).
- 4) I. Ichimoto, K. Fujii, and C. Tatsumi, Agr. Biol. Chem. (Tokyo), 29, 325 (1965); I. Ichimoto and C. Tatsumi, ibid., 34, 961 (1970); C. R. Stephen, B. E. Tate, and R. P. Allingham, Berg. Pat. 651427 (1965).
- 5) K. Kawase and K. Hayashi, Nippon Nogei Kagaku Kaishi, 46, 335 (1972) and references cited therein.
- 6) R. K. Chawla and W. E. McGonigal, J. Org. Chem., 39, 3281 (1974).
- 7) Daicel Co., Ltd., Japan Kokai Pat. 68574, 68575, 68576 (1973); Japan Pat. 14105 (1972), 17237 (1971); Ger. Offen. 2225446 (1972), 1951294 (1970); U. S. Pat. 3665015 (1972).
- 8) Monsanto Co., Ltd., U. S. Pat. 3621063 (1971), 3491122, 3494959 (1970), 3474113, 3455960 (1969); Daicel Co., Ltd., Japan Pat. 21106 (1970); Takasago Perfumery Co., Ltd., Japan Pat. 29181 (1970); Fujisawa Pharm. Chemical Co., Ltd., Japan Pat. 27643 (1969); K. Nakanishi, M. Nagao, and K. Okada, Yakugaku Zasshi, 88, 1044 (1968).
- 9) (a) O. Achmatowicz, P. Bukowski, B. Szechner, Z. Zwierzchowska, and A. Zamojski, Tetrahedron, 27, 1973 (1971); (b) O. Achmatowicz and B. Szechner, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 19, 309 (1971).
- 10) It has been shown that the isomerization of 2c to 3c was carried out on treatment with 1-2% sulfuric acid for ca. 2 hours: Ref. 9.
- 11) Electrolytic methoxylation of furfuryl alcohols (la and lb) in MeOH using NH₄Br as a supporting electrolyte have been shown to give 2a (66%) and 2b (73%), respectively: see N. Clauson-Kaas, F. Limborg, and P. Dietrich, Acta Chem. Scand., 6, 545 (1952); P. Nedenskov, N. Elming, J. T. Nielsen, and N. Clauson-Kaas, ibid., 9, 17 (1955). However, the improved method in MeOH containing Et₄NClO₄ under a constant current of 0.07-0.01 A/cm² (2.02 F/mol) gave 2a (91%), 2b (95%), and 2c (94%), respectively. The details will be published elsewhere.
- 12) The acetalization of the hemiacetals (3a and 3b) using BF₃-OEt₂ or SnCl₄ as catalysts has been shown to give 4a (43%) and 4b (45%), respectively: Ref. 9a.
- 13) The related chlorinated compound of 7b has been obtained by the reaction of 5b with lithium chloride in THF at 65 °C in 80% yield: H. Paulsen, K. Eberstein, and W. Koebernick, Tetrahedron Lett., 4377 (1974).
- 14) The hydrogenation of 3b with 5% Pd on charcoal giving 6-hydroxy-2-methyltetrahydropyran-3-one has been reported: Ref. 9b.
- 15) D. J. Cooper, D. H. Davies, A. K. Mallams, and A. S. Yehaskel, J. Chem. Soc., Perkin Trans. I, 785 (1975).
- 16) Satisfactory elemental analyses and acceptable spectral data were obtained for all new compounds reported herein.
- 17) R. Mayer, Chem. Ber., 90, 2369 (1957).